Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan.

نویسندگان

  • Harry Brumer
  • Qi Zhou
  • Martin J Baumann
  • Kjell Carlsson
  • Tuula T Teeri
چکیده

Cellulose constitutes an important raw material for many industries. However, the superb load-bearing properties of cellulose are accompanied by poor chemical reactivity. The hydroxyl groups on cellulose surfaces can be reacted but usually not without loss of fiber integrity and strength. Here, we describe a novel chemoenzymatic approach for the efficient incorporation of chemical functionality onto cellulose surfaces. The modification is brought about by using a transglycosylating enzyme, xyloglucan endotranglycosylase, to join chemically modified xyloglucan oligosaccharides to xyloglucan, which has a naturally high affinity to cellulose. Binding of the chemically modified hemicellulose molecules can thus be used to attach a wide variety of chemical moieties without disruption of the individual fiber or fiber matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategies for Cellulose Fiber Modification

This thesis describes strategies for and examples of cellulose fiber modification. The ability of an engineered biocatalyst, a cellulose-binding module fused to the Candida antarctica lipase B, to catalyze ring-opening polymerization of εcaprolactone in close proximity to cellulose fiber surfaces was explored. The water content in the system was found to regulate the polymer molecular weight, w...

متن کامل

Production and engineering of a xyloglucan endo- transglycosylase from Populus tremula x tremuloides

The aim of this work was to develop a production process for the enzyme xyloglucan endo-transglycosylase from Populus tremula x tremuloides (PttXET16-34). The natural transglycosylating activity of this enzyme has previously been employed in a XETTechnology. This chemo enzymatic method is useful for biomimetic modification of cellulose surfaces and holds great potential for industrial applicati...

متن کامل

Fractionation of xyloglucan fragments and their interaction with cellulose.

Tamarind seed xyloglucan was partially degraded with a purified endoglucanase (endoV) from Trichoderma viride. Analysis by high-performance anion-exchange chromatography showed that this digest was composed of fragments consisting of 1 to 10 repeating oligosaccharide units ([xg]1-[xg]10). To study the adsorption of xyloglucan fragments to cellulose in detail, this digest was fractionated on Bio...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 18  شماره 

صفحات  -

تاریخ انتشار 2004